
Design of Stochastic Nanomagnets for Probabilistic Spin Logic 
 

Punyashloka Debashis1,2, Rafatul Faria1, Kerem Y. Camsari1, and Zhihong Chen1,2 
1School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA 
2Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA 

 
Abstract— Probabilistic spin logic (PSL) is a new paradigm of computing that relies on probabilistic bits (p-bits) that 
fluctuate randomly between metastable states. PSL may be more efficient than conventional CMOS- based logic in 
terms of intrinsic optimization, Bayesian inference, invertible Boolean logic, and hardware machine learning. 
Effectively tunable random number generators, p-bits can be realized as stochastic nanomagnets that can be made 
to prefer one state over others by an external input such as voltage or current. This paper looks at the design of 
stochastic nanomagnets that are most suitable as p-bits for PSL. Experimental evidence, supported by theory and 
numerical simulation, show that the scaling of magnetic anisotropy is more effective than scaling of the net magnetic 
moment for voltage-driven PSL applications. A novel system that can be used as a tunable random number generator 
is demonstrated experimentally and analyzed theoretically: a magnet with perpendicular magnetic anisotropy that is 
initialized to its hard axis by giant spin Hall effect torque. With zero external input, this system provides a potentially 
better alternative to other nanomagnet-based random number generators. By tuning the randomness through an 
external input, this system is suitable for probabilistic networks for Bayesian inference. 
 
Index Terms—Nanomagnetics, probabilistic spin logic, low barrier nanomagnet, hard axis initialization. 
 
 

I. INTRODUCTION 

Probabilistic spin logic (PSL) is a new computing paradigm that 
has been theoretically shown to be more suitable than conventional 
CMOS for performing tasks such as intrinsic optimization, 
probabilistic inference from Bayesian networks and invertible 
Boolean logic1–6. PSL relies on unstable, stochastic bits, called “p-
bits” that are essentially random signal generators with a tunable 
mean output. They can either be analog (generating any random 
values between “0” and “1”) or binary random number generators 
(generating randomly “0” or “1”). A stochastic nanomagnet with 
low barrier energy, EB, can form a natural hardware for 
implementing the p-bit as its magnetization randomly fluctuates 
between its metastable states with an average retention time of7 

𝜏 = 𝜏0𝑒𝑥𝑝 (
𝐸𝐵

𝑘𝐵𝑇
)                                          (1) 

where 0 is the material dependent parameter called the attempt time 
of the nanomagnet. The most commonly stated value for 0 in 
literature is generally assumed to be between7 10-11 s to 10-9 s. 
Hence, a low barrier nanomagnet based p-bit with EB ≈ kBT can 
produce random numbers at GHz speed. The mean value of 
magnetization (and as a result, the mean of the produced random 
numbers) can be tuned by an external input such as spin current 
from the giant spin Hall effect (GSHE)3–5, spin transfer torque 
(STT)8,9 , or an effective magnetic field from the magnetoelectric 
(ME) effect10. The ease of tunability is judged by evaluating the 
input required to pin the fluctuating magnetization state to one value. 
For example, the magnitude of the effective magnetic field 
generated by electric field in the case of voltage control of 
magnetization (VCM)11 is an important metric for energy efficiency 
to achieve low power computation. Significantly, both speed and 
energy consumption of the p-bit can be carefully engineered through 
proper design of the nanomagnet involved in the device. 
    In this work, three methods to obtain stochastic nanomagnets have 
been explored: (i) by reduction of anisotropy, (ii) by reduction of net 

magnetic moment, (iii) by hard axis initialization. While the first 
method leads to an analog random number generator, the second and 
the third methods form binary random number generators, owing to 
the random telegraphic noise behavior of their output. In conjunction 
with Boltzmann theory and stochastic Landau-Lifshitz-Gilbert 
(sLLG) simulations, the first two methods are compared in terms of 
pinning field and speed. Finally, a novel method to generate random 
numbers with a tunable input, achieved by hard axis initialization of 
a perpendicular magnetic anisotropy (PMA) magnet is demonstrated 
for the first time. Supported by the Fokker-Planck theory and sLLG 
simulations, its pinning field and speed are discussed.  
 

II.  STOCHASTICITY BY SCALING MOMENT AND 
SCALING ANISOTROPY 

In order to make a fast stochastic nanomagnet that randomly 
fluctuates between its metastable states with an average retention 
time of 1 ns, its energy barrier EB needs to be scaled to ~1 kBT, 
according at Eq. 1. Since EB is a product of the anisotropy field HK 
and the net moment MS*Vol., both can be reduced to achieve an 
energy barrier of 1 kBT. The response of such stochastic 
nanomagnets to magnetic fields can be captured by the following 
analysis based on the Boltzmann law: 

The energy of a magnet in the macro spin limit under the 
application of an external B-field, 𝐻𝑒𝑥𝑡 can be written as, 

𝐸 = 2𝜋𝑀𝑠
2(𝑉𝑜𝑙. )𝑚𝑥

2 − 𝐻𝑒𝑥𝑡𝑀𝑠(𝑉𝑜𝑙. )𝑚𝑧 −
1

2
𝐻𝑘𝑀𝑠(𝑉𝑜𝑙. )𝑚𝑧

2  (2) 
where, 𝑚𝑥 = 𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜙) is the magnetization along the out of 
plane hard axis (x), 𝑚𝑧 = 𝑐𝑜𝑠(𝜃) is that along the easy axis (z), 𝜃 
being the angle of the magnetization direction w.r.t to the easy axis, 
𝑀𝑠 is the saturation magnetization, 𝐻𝑘 is the uniaxial anisotropy 
along z-axis, and 𝑉𝑜𝑙. is the volume of the magnet. The first, second 
and third terms are contributions from the shape anisotropy, external 
magnetic field and uniaxial anisotropy field, respectively. 



The probability of finding the magnetization in (𝜃, 𝜙) 
configuration can be found by the equilibrium Boltzmann 
distribution, 

𝑝(𝜃, 𝜙) =
1

𝑍
𝑒𝑥𝑝 (−

𝐸

𝑘𝐵𝑇
)                              (3) 

where 𝑍 is a normalization constant. 
The average magnetization along z-axis can be written as, 
 

〈𝑚𝑧〉 =
∫ ∫ 𝑑𝜙 𝑑𝜃 𝑝(𝜃,𝜙) 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

𝜙=𝜋

𝜙=−𝜋

𝜃=𝜋

𝜃=0

∫ ∫ 𝑑𝜙 𝑑𝜃 𝑝(𝜃,𝜙) 𝑠𝑖𝑛(𝜃)
𝜙=𝜋

𝜙=−𝜋

𝜃=𝜋

𝜃=0

                  (4) 

Based on the above equations, Fig. 1 shows the plot of the field 
that is required to pin a stochastic nanomagnet as we scale its energy 
barrier. Scaling the HK results in almost negligible change in pining 
field. However, scaling moment to smaller values results in much 
larger corresponding pinning fields.  

Inset of Fig. 1 considers two magnets with EB = 1kBT obtained by 
reducing HK (red curve) and MS*Vol. (blue curve) respectively. 
Compared to a stable 40 kBT magnet, the first magnet has 40 times 
smaller HK and the second has 40 times smaller moment. Even 
though both magnets have the same EB, leading to the same time 

scale of fluctuation (), the field required to pin the low HK is 
appreciably smaller than that for the low MS*Vol. magnet (inset of 
Fig. 1). Since this translates to a smaller energy requirement in a 
voltage driven PSL10 circuit, designing stochastic nanomagnets by 
reducing anisotropy seems to be the better option compared to 
reducing the volume. We then go on to test this theoretical 
prediction experimentally. 

To compare the effect of reduced anisotropy vs. reduced volume, 
it would be ideal to fabricate the two 1 kBT magnets as described 
above. However, in practice, it is challenging to make two stochastic 
nanomagnets that are 40 times different in net moment. Therefore, 
two nanomagnets that are ~4 times different in their net moment are 
fabricated in the following experiments.  

1. Achieving stochasticity by reducing anisotropy 

Experimentally, a low HK magnet is realized by a circular disk 
magnet of CoFeB with a diameter of 110 nm and thickness of 1.3 
nm. Circular disk in-plane magnets have been proposed as p-bits2,3 
as they fluctuate in random in-plane directions as a function of time. 
Such a stochastic element has been realized in our experiments with 
monodomain circular disk nanomagnets2,12 with careful material and 
design choices, guided by the trade-off between exchange stiffness 
and dipolar self-energy13. Starting from a sputter deposited stack of 
Ta(15)/CoFeB(1.5)/MgO(1)/Ru(4) (thicknesses in nm), an array of 
25 million nominally identical circular disk nanomagnets is 
fabricated using e-beam lithography and Ar ion milling. Then their 
response is measured using a superconducting quantum interference 
device (SQUID) in Quantum Design MPMS-3. Fig. 2 (a) shows the 
scanning electron microscopy (SEM) image of a portion of the array. 
Fig. 2 (b) shows a hysteresis free, sigmoidal output curve of the 
average magnetization of the array. It should be noted here that 
although the average steady state behavior is determined completely 
by the applied magnetic field, the time domain behavior of each 
nanomagnet is stochastic, owing to their low energy barrier. Such 
individually stochastic units whose average behavior exhibits a 
sigmoidal response as a function of an input parameter can be used 
as a building block for a class of stochastic neural networks in 
machine learning14 among other PSL applications. 

2. Achieving stochasticity by reducing moment 

 
 
 

 
Fig. 1. Field required to pin a stochastic magnet vs. the speed of 
fluctuation. Calculations based on Boltzmann law show that 
making magnets faster by scaling anisotropy (red curve) is more 
efficient than scaling net moment (blue curve) in terms of the field 
required to pin the scaled magnet. The inset shows the average 
magnetization vs. B field for a 1 kBT magnet. It suggests that the 
pinning field is much smaller for the case of magnet B (red curve) 
compared to magnet C (blue curve).  



 
Fig. 2. Two methods of reducing energy barrier: anisotropy reduction and net magnetic moment reduction. (a) SEM of the array 
of CoFeB circular disk magnets. (b) normalized magnetization response to applied magnetic field. The sigmoid shape with no 
remanence at zero field and saturation behavior is reminiscent of tunable stochastic behavior. (c) SEM of the array of Py 
elliptical magnets. (d) normalized magnetization response to applied magnetic field for various temperatures. The sigmoid gets 
sharper for a lower temperature and eventually a hysteresis behavior is observed as the magnet fluctuations slow down. (e) 
comparison of the two magnet behaviors matched with predictions by LLG simulations and Boltzmann law with experimental 
parameters. The required pinning field for the circular disk magnet is 20% less compared to that for the elliptical magnet, 
despite the fact that the former magnet has 4 times more MS*Vol. compared to the latter magnet.  

Next an array of 100 million elliptical nanomagnets are fabricated 
using e-beam lithography, physical evaporation of Permalloy, 
followed by liftoff. Since they are elliptical, shape anisotropy15 
creates a large HK. Hence, to reach stochasticity, the net moment has 
to be reduced to obtain small EB. This is achieved in our magnets 
with dimensions of 49nm x 61nm x 5nm. Also, through heat 
treatment (heating to 400 K for one hour then at 500 K for another 
hour, followed by cool down to room temperature all at ~150 mTorr 
pressure in Helium), reduced saturation magnetization of 250 
emu/cc is obtained for our Permalloy nanomagnets. Fig. 2 (c) shows 
the SEM picture of an array of such nanomagnets. At 300 K, EB is 
small enough to make the magnets stochastic, resulting in a sigmoid 
curve shaped normalized magnetization shown in Fig. 2 (d), black 
curve. Using experimentally measured saturation magnetization and 
magnet volume, HK of 25 mT can be extracted by fitting the curve 
with a sigmoid function obtained from the Boltzmann law. This then 
results in EB ≈ 9 kBT and consequently  ≈ 8 s (assuming 0 = 1 ns). 
Since our conclusion from this experiment relies on the fact that 
these elliptical magnets have large anisotropy, HK obtained from 
fitting needs justification. To ensure that the fitted value of HK is 
reasonable, further measurements at reduced temperatures are 
carried out. A sigmoidal response is still observed at T = 200 K with 
a sharper slope (Fig. 2 (d), red curve), consistent with the 
expectation from the Boltzmann law. Finally, at T = 100 K, magnets 
are essentially frozen and the ensemble behaves like a ferromagnet, 
showing hysteretic magnetization response to the applied field with 
a clear remanence at B = 0 T (Fig. 2 (d), blue curve). Considering 
the saturation magnetization, magnet volume, and the fact that the 
magnetization of these nanomagnets transition from being stochastic 
to stable in a temperature window between 100 K and 200 K, the 
bounds for HK are estimated to be between 10-30 mT, which is 
consistent with the fitted HK value of 25 mT. Both sigmoidal curves 

at 300 K and 200 K show excellent agreement with the Boltzmann 
law using the same set of HK and MS with temperature corrections.  

3. Comparing the two methods 

Using the experimentally measured values of MS and Vol., the net 
moment, MS*Vol. = 1.2 x 10-14 emu and 0.3 x 10-14 emu are 
calculated for the CoFeB circular disk magnet and the Permalloy 
elliptical magnet, respectively. As expected, when the two scaling 
methods are compared in Fig. 2 (e), the pinning field for the circular 
disk magnet is 20% smaller than that of the elliptical one, despite its 
MS*Vol. is 4× larger. This is also confirmed by stochastic LLG 
simulations. The excellent agreement between experiment, 
Boltzmann law, and stochastic LLG simulations for both circular 
disk and elliptical magnets is shown in Fig. 2 (e). 

Since the circular disk magnet has negligible EB because of the 
absence of a shape anisotropy, as long as the circular disk magnet is 
small enough to behave as a monodomain body by avoiding vortex 
formation, its fluctuation time scale is limited by 0, unlike the 
elliptical magnet (see eq.1). Hence, the circular disk magnet is both 
faster and lower energy consuming by requiring a smaller pinning 
field, compared to the elliptical magnet.  

 
III. STOCHASTICITY BY HARD AXIS INITIALIZATION 

OF A PERPENDICULAR ANISOTRPY MAGNET 

Now a thermally stable PMA magnet, whose easy axis is along z-
axis is considered. It is initialized along its hard axis direction (x-y 
plane) by means of an external force. When the external force is 
removed, the magnet makes a stochastic choice to fall into one of the 
two stable states along its easy axis. When this is done in the 
presence of a small external z directed magnetic field, the 



magnetization prefers one state over the other, producing the 
sigmoidal curve for the average magnetization.  

To test this idea, tantalum Hall bar devices with a PMA magnet 
island at the center are fabricated. Starting from a sputter deposited 
stack of Ta(10)/CoFeB(1)/MgO(1.5)/Ta(5) (thicknesses in nm), a 
series of two steps, each consisting of e-beam lithography followed 
by Ar ion milling is used to fabricate devices as shown in AFM 
image of Fig. 3 (a). Finally contact pads are formed by e-beam 
lithography followed by Au evaporation and liftoff. A charge current 
in the “y” direction produces a voltage along the “x” direction due to 
the anomalous Hall effect (AHE) of the PMA magnet, where the 
sign of this voltage depends on whether the magnet is pointing “up” 
(+z direction) or “down” (-z direction). We use this method to read 
the magnetization direction of the PMA magnet. Fig. 3 (b) shows the 
measured hysteresis loop of the PMA magnet by means of AHE 
with an external field sweeping in the “z” direction.  

Next, an efficient way to put a PMA magnet in its hard axis and 
releasing it is demonstrated in the following experiment. It is well 
understood that a moderate current pulse along the y-axis of Ta can 
produce a spin transfer torque to the PMA magnet along the x-axis 
and cause its magnetization rotation in the y-z plane16. However, 
when a large current pulse (J = 3.1 x 107 A/cm2) is applied through 
the Hall bar, the spin torque becomes so large that the PMA magnet 
can develop a magnetization along the x-direction, as predicted by 
Liu et al.17 Once the large torque is released, PMA magnet will go 
back to one of its easy axis magnetization by random choices (Fig. 3 
(c)), which can be monitored by the RAHE reading.  This pulsing is 
repeated several times to show the complete randomness of the two 
RAHE states after each pulse. A similar experiment was performed by 
Bhowmik et al. for spin hall clocking of nanomagnetic logic18. 
Furthermore, a small out of plane magnetic field is applied and the 
above procedure is repeated. The plot of the average magnetization 

after 51 pulsing events for each applied magnetic field is shown in 
Fig. 3 (d). Here, the average magnetization is calculated by: 

< 𝑅𝐴𝐻𝐸 >=
1

𝑁
Σ (

𝑅𝐴𝐻𝐸

|𝑅𝐴𝐻𝐸|
)                                (5) 

where N is the number of pulsing events (51 in this case). The sub 
plots of Fig. 3 (d) show the individual pulsing events for each point 
on the sigmoidal curve. This shows that at any given magnetic field, 
B, the magnetization of the PMA magnet after releasing from its 
hard axis behaves stochastically, with an overall mean that is tunable 
by the magnetic field.  

Next, the observed experimental hard-axis initialization of PMA 
magnets is systematically analyzed using stochastic LLG 
simulations. In the absence of any magnetic fields the critical current 
to place a PMA magnet in its hard axis is of the order of 𝐼𝑆𝐶 =
2𝑞

ℏ
𝑀𝑆𝑉𝑜𝑙.

𝐻𝐾

2
 19 and we apply currents of this magnitude for typically 

chosen parameters. The current pulse is then removed and the 
magnet relaxes to +z or –z in the presence of thermal noise and a z-
directed external magnetic field that is on the entire time (Fig. 4 
inset). This procedure is repeated for many samples at each magnetic 
field and an average magnetization is obtained as in the experiment. 
Three different spin-current pulses are investigated based on how 
fast they are turned off. In the case of the fast turn off, the 
magnetization dynamics can be directly solved by a 1-D Fokker-
Planck Equation (FPE) 20 that describes the exact evolution of the 
ensemble, since when the spin-current is off, the external magnetic 
field and the anisotropy are both in the +/-z direction. The FPE 
equation for a z-directed PMA magnet is described by- 

𝜕𝑝(𝑚𝑧, 𝜏𝑁)

𝜕𝜏𝑁
=

𝜕

𝜕𝑚𝑧
[(𝑖 − ℎ − 𝑚𝑧)(1 − 𝑚𝑧

2)𝑝 +  
1 − 𝑚𝑧

2

2𝐸𝐵

𝜕𝑝

𝜕𝑚𝑧
] 

Here, 𝑖 is the normalized z-polarized spin current 𝐼𝑠

𝐼𝑠𝑐
 where 𝐼𝑠𝑐 =

4𝑞

ℏ
𝛼𝐸𝐵(𝑘𝑇) with 𝛼 being the damping co-efficient and 𝐸𝐵 being the 

thermal energy barrier of the magnet; ℎ is the normalized z-directed 

 
Fig. 3. Tunable random number generator from hard axis initialization of a PMA magnet. (a) AFM of the fabricated device with 
marked current, voltage and external magnetic field directions. The AHE resistance is calculated by taking the ratio of the 
voltage developed and the charge current supplied. (b) RAHE as a function of external B field. The hysteretic behavior is 
indicative of a good, stable PMA magnetic behavior. (c) cartoon depicting the physical picture of hard axis initialization. (d) The 
sigmoid obtained by putting the PMA magnet in hard axis by GHSE torque and then letting it relax back to either “up” or “down” 
position in the presence of a small external field along z-axis. Each point in this curve is obtained by taking the average of 51 
GSHE pulsing events. Three indicative points are shown in the three panels to the right of the graph. 



external magnetic field 𝐻𝑒𝑥𝑡

𝐻𝑘
; 𝜏𝑁 is a normalized time which is related 

to the real time 𝑡 by 𝑡 = 𝜏𝑁(1 + 𝛼2)/𝛼𝛾𝐻𝑘. After the x-polarized 
GSHE spin current is turned off, 𝑖 = 0 in the FPE equation. 

The FPE is solved starting from the time when the pulse is turned 
off, with an initial condition 𝑝(𝑚𝑧, 𝜏𝑁 = 0) that places the initial 
probability distribution to the hard-axis, approximated by a Gaussian 
distribution of 𝑝(𝑚𝑧) with mean zero and a very small standard 
deviation. For a fast turn off of the spin-current, FPE is in good 
agreement with a direct stochastic LLG simulation. This suggests 
that the slope of the sigmoid depends only on the energy barrier (EB) 
and the ratio of the external magnetic field to the anisotropy field 
(H/HK), since these are the only parameters that enter the FPE. So, 
for a given energy barrier, having a lower HK results in a smaller 
pinning field, as evident from the x-axis of Fig. 4.  

The speed at which random numbers can be generated by the hard 
axis initialization method is determined by the pulse rate. However, 
a few parameters also need to be analyzed carefully. Firstly, this 
speed is ultimately limited by the time it takes for the magnetization 
to relax back to one of the stable states once released from the hard 
axis. This is determined by the natural time scale (𝜏𝑁) of the magnet 
mentioned earlier, and is independent of its energy barrier, unlike 
the case of low barrier magnets. Secondly, since the randomization 
occurs when the magnet relaxes from its hard axis, and is not 
affected by any prior events, the pulse rise time (trise) and the pulse 
width (tON) does not affect the process if their sum is larger than 𝜏𝑁. 
However, the effect of pulse fall time (tfall) must be analyzed 
carefully as it affects the process of magnetization relaxation from 
the hard axis. We investigated different slew rates for the spin 
current and observed that for slow current ramp down the sigmoidal 
curve becomes sharper. Fig. 4 inset illustrates this behavior for 10 
samples for different spin-current pulses at a slightly negative 
magnetic field. It should be mentioned that although an electrically 
fast turn off of the spin-current is more relevant for a practical 
device implementation, the spin-current was slowly turned off in the 
experiment due to the limitation of the measurement set-up.  

This method of producing random numbers is very fast, 
irrespective of the magnet’s energy barrier. Here, the speed is 
determined by the pulse duration and interval between adjacent 
pulses, as long as they are not faster than the intrinsic attempt time 
of the magnet. Second, this method provides a potentially better 
alternate to the STT-MTJ based true random number generators 
(TRNG) that rely on the stochastic behavior around the switching 
threshold current21. In our case, the current pulse passes through the 
adjacent heavy metal layer (Ta) instead of passing through the 
tunnel barrier as in the case of STT-MTJ based TRNGs, and hence 
our device has potentially better endurance and capability to produce 
more random numbers. Also, compared to TRNGs based on super 

paramagnetic MTJs9, this device does not require an external 
magnetic field to cancel the dipolar field from the reference layer. 
Apart from its application as a TRNG, we see this method to be an 
efficient way to implement Bayesian networks through hard axis 
initialization, as presented by Behin-Aein et al1. 
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Fig. 4. Stochastic LLG simulations of a hard-axis initialized PMA 
magnet. At each point, at least N=200 samples are recorded 
and an average magnetization is obtained as in the experiment.   


